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Abstract
The theory of nuclear spin relaxation is developed for a random walk model of hydrogen
diffusing between interstitial g sites in the cubic C15 AB2 structure. The theory is applied in
analysing the proton relaxation data for low H concentration in TaV2Hx . The random walk
theory results are used to assess the accuracy of a simpler modified
Bloembergen–Purcell–Pound model. The temperature dependences of the two rates of jumps
between g sites are deduced. The temperature dependence of the rate of jumps between g sites
on a hexagon shows Arrhenius behaviour above ∼50 K and a non-Arrhenius form at lower
temperatures. The values of this jump rate are incompatible with the results from the analysis of
quasielastic neutron scattering experiments. Possible reasons for this discrepancy are suggested.

1. Introduction

Hydrogen diffusion in intermetallic compounds is of interest
in the development of hydrogen storage materials and the
Laves-phase compounds AB2 have attracted attention because
many of these can absorb appreciable amounts of hydrogen [1].
Hydrogen occupies interstitial sites in the host metal structures
and the hydrogen diffusion between these sites can be
complicated in the Laves-phase compounds because there may
be sets of inequivalent interstitial sites and multiple jump paths
and jump rates. In addition, the hydrogen diffusion can show
quantum behaviour at low temperatures and some ordered
hydrogen configurations can occur [1]. Nuclear spin relaxation
and quasielastic neutron scattering (QENS) are commonly
used experimental techniques to study the site occupations
and dynamics for hydrogen diffusion in metals [2, 3], but
the analysis and interpretation of the experimental data is not
a simple matter in the Laves-phase intermetallic compounds
because of the above complications.

The most thoroughly studied example of the Laves-phase
compounds is the cubic C15 Laves-phase compound TaV2Hx

in which hydrogen occupies a set of equivalent interstitial g
sites that are arranged in linked hexagons [1]. There are two
jump paths from a g site to nearest neighbours on a hexagon
and one jump path to a near neighbour on an adjacent hexagon.
Nuclear spin relaxation [4–6] and QENS [7, 8] studies in this
system have shown the existence of two hydrogen jump rates
corresponding to fast jumps �1 within hexagons and slower

jumps �2 between hexagons. It has also been established that
there is a temperature-dependent fraction 1− p of the hydrogen
that do not participate in the �1 and �2 jumps. These ‘static’
hydrogen are postulated to be in ordered configurations.

Each of the nuclear spin relaxation and QENS methods
needs a theoretical model of the hydrogen diffusion to interpret
and analyse the experimental data. For low concentrations of
hydrogen that diffuse between a set of equivalent interstitial
sites in a metal, the simplest model is that a hydrogen atom
will undergo an uncorrelated random walk with a jump rate
� for hops between sites. This random walk model is called
the Chudley–Elliott model when applied to QENS theory. It
has been generalized to diffusion between sets of inequivalent
interstitial sites which involves multiple jump rates [9] and
to jumps between a localized set of sites [10]. The random
walk model for diffusion between g sites in the C15 structure
involves uncorrelated hops between sites with a jump rate �1

for jumps within a hexagon and a jump rate �2 for jumps
between hexagons.

The application of the random walk model to calculating
nuclear spin relaxation rates for diffusing protons in metals
is more difficult. In this case the relaxation rates are linear
combinations of spectral density functions that couple the
diffusive motion of the hydrogen and the magnetic dipolar
interactions between pairs of spins [2, 11]. A commonly
used approximation that ignores the random walk details is
the Bloembergen–Purcell–Pound (BPP) model [2]. The BPP
model simply depends on the jump rate of a proton away from
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a site and assumes the dipolar correlation function between
a pair of spins becomes zero when a jump occurs. The
BPP model has been used in some analyses of proton spin
relaxation rates in TaV2Hx [4, 5]. A modified BPP model
was subsequently developed that describes the diffusion around
a hexagon correctly but retains the BPP approximation for
jumps between hexagons [12]. The random walk model
includes the full details of the diffusive relative separation
of a pair of relaxing spins and calculations based on this
theory would enable a more rigorous analysis of the relaxation
data and also allow the accuracy of the simpler models to be
assessed. For proton–proton interactions (like-spin relaxation)
there are additional complications due to correlations between
the diffusion of each of a pair of protons, but for proton–metal
interactions (unlike-spin relaxation) these correlations do not
occur because the protons diffuse on a different set of sites to
the metal nuclei. It is the latter case that is relevant to proton
relaxation in TaV2Hx .

The aim of the present work is to develop the random walk
model for proton spin relaxation due to proton–metal nuclear
interactions for hydrogen diffusion between the interstitial g
sites in the cubic C15 AB2 structure and apply this theory to
analysing the proton relaxation data for TaV2Hx . The emphasis
in this work is on testing the consistency of the results obtained
from analysing nuclear spin relaxation, QENS and diffusivity
experimental data on the same system. The random walk
theory results for the nuclear spin relaxation also enable an
assessment of the accuracy of the simpler BPP models. The
techniques and results obtained here will also be applicable to
hydrogen in other Laves-phase intermetallic compounds.

Random walk theory of nuclear spin relaxation has
previously been applied to hydrogen diffusion on Bravais
lattices using a reciprocal space formalism [13]. This method
has recently been extended to diffusion on interstitial sites
in the cubic A15-type structure Nb3AlHx which form a non-
Bravais lattice structure with multiple jump rates [14]. The
reciprocal space method is, however, quite inefficient for the
C15 structure because of the crystal structure and the large
number (12) of g sites per unit cell. An alternative approach
based on the Poisson distribution for the probability of n jumps
of a diffusing atom in a time t is therefore developed in the
following section.

2. Nuclear spin relaxation theory

Nuclear spin–lattice relaxation due to unlike-spin dipolar
interactions will, in general, be characterized by a linear
combination of two exponential decay rates [11]. In the
case of protons diffusing in metal–hydrogen systems, it is
usually the case that the metal nuclei relax much faster than
the protons. The general equations [11] then show single
exponential recoveries and the proton spin relaxation rate R1

in polycrystalline samples is

R1 = 1
15γ

2
I γ 2

S h̄2S(S + 1)[J (ωI − ωS) + 3J (ωI )

+ 6J (ωI + ωS)] (1)

where γI and γS are the gyromagnetic ratios for the proton and
metal nucleus, respectively, S is the spin quantum number of

the metal nucleus, and ωI = γI B and ωS = γS B , where B is
the applied magnetic field. The spectral density function J (ω)

is the Fourier transform

J (ω) = 2 Re
∫ ∞

0
G(t)eiωt dt (2)

of the correlation function G(t) defined by

G(t) =
∑
α,β

P2(cos θαβ)

r 3
αr 3

β

P(rα, rβ , t) (3)

where P(rα, rβ , t) is the probability of a proton and a metal
nucleus being separated by rα at time zero and these same
spins then being separated by rβ at time t , P2(z) is a Legendre
polynomial, and θαβ is the angle between rα and rβ . Choosing
a g site as origin, G(t) can be written as

G(t) =
∑
α,γ

P2(cos θαβ)

r 3
αr 3

β

P(rγ , t) (4)

where rα are the metal sites, rγ are the g sites, rβ = rα + rγ ,
and P(rγ , t) is the probability of a proton being displaced by
rγ in a time t . At low hydrogen concentration, where each
hydrogen follows an uncorrelated random walk, P(rγ , t) can
be written as

P(rγ , t) =
∞∑

n=0

Pn(rγ )wn(t) (5)

where Pn(rγ ) is the probability of the hydrogen being
displaced by rγ after n jumps, wn(t) = (�t)n exp(−�t)/n!
is the Poisson distribution for the probability of n jumps of a
particular hydrogen in a time t and � = 2�1 + �2 is the total
jump rate away from a g site. The total number of jumps from
each equivalent g site is determined by the total jump rate �,
but the particular g site moved to at each jump will depend on
the values of �1 and �2. The spectral density function J (ω)

can then be written as

J (ω) =
∑

γ

∞∑
n=0

S(rγ )Pn(rγ )wn(ω) (6)

where S(rγ ) is a sum over the sites of the metal nuclei

S(rγ ) =
∑

α

P2(cos θαβ)

r 3
αr 3

β

(7)

with rβ = rα + rγ , and where wn(ω) = Re[2�n/(� − iω)n+1]
is the Fourier transform of wn(t). The expression (6) is a
convenient form for computation of J (ω) because the S(rγ )

depend only on the crystal structure. These sums can be
computed and stored for a suitable set of sites rγ . The
probabilities Pn(rγ ) contain the dependence on the jump rates
�1 and �2 and are the reason why the relaxation rate does not
depend only on the total jump rate � as assumed in the BPP
model. They can be generated numerically by enumerating all
possibilities for a given n or by Monte Carlo simulations. In
a simulation a jump from a g site will be to a neighbouring
hexagon with probability �2/� and will be to each of the
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Figure 1. Temperature dependence of the dipolar part of the proton
spin–lattice relaxation rate in TaV2H0.1 at 23, 40 and 90 MHz (high
temperature maximum). Symbols are experimental data [5]. The
solid curves are a fit to the data using random walk theory. The
dashed curves are a fit using the modified BPP model.

two nearest neighbours on a hexagon with probability �1/�.
The calculations of Pn(rγ ) in the following section used the
enumeration method.

A useful modification of this procedure is that S(rγ )Pn(rγ )

in (6) can be replaced by [S(rγ )Pn(rγ )− X] where X is a con-
stant. This does not effect the value of J (ω) for non-zero ω but
may improve the convergence rate of the summations. For ex-
ample, if only �1 jumps occurred, each hydrogen is confined to
jumps on a single hexagon. The correlation function G(t) then
approaches a non-zero constant

∑
γ ′ S(rγ ′)/6 at large t , where

the γ ′ sum is over the six localized sites. Choosing X as this
constant improves the rate of convergence significantly. Such
a procedure is useful for any circumstance where the hydrogen
diffusion involves many localized jumps.

Another modification of the theory is useful when the
localized jumps occur so rapidly that they effectively just
average the dipolar interactions and the relaxation is caused by
the slower jump rate. Under these circumstances the Poisson
distribution wn(t) can refer to the number n of the slower
jumps in a time t , and the Pn(rγ ) refers to the probability of
the proton being at rγ after n steps, where a step consists of
an averaging over the localized sites followed by a jump away
from these sites.

The above numerical methods can calculate the spectral
density function J (ω) using random walk theory for general
values of the jump rates �1 and �2. The results from
these calculations can be used to assess the accuracy of
approximate analytic spectral density functions. The BPP
model corresponds to only retaining the term n = 0 in
equations (5) and (6) and only depends on the total jump rate
away from a site. This is equivalent to the dipolar correlation
function being reduced to zero when the first jump occurs. The
modified BPP model [12] involves a rigorous random walk
analysis of the �1 jumps around a hexagon together with the
approximation that a �2 jump to a neighbouring hexagon that
reduces the correlation function to zero as for the BPP model.
The spectral density functions for this model are given in [12].

Figure 2. Temperature dependence of the dipolar part of the proton
spin–lattice relaxation rate in TaV2H0.1 at 23, 40 and 90 MHz.
Symbols are experimental data [5]. The curves are the rates
calculated from the modified BPP model as described in the text.

A special case of this modified BPP model is when �1 → ∞.
This corresponds to a BPP model for the case in the preceding
paragraph (n = 0). A similar model could be used for the
case of rapid jumps �2 between hexagons and slower jumps
�1 within hexagons.

3. Application to TaV2Hx

The proton spin–lattice relaxation rate R1 in TaV2Hx has
been measured as a function of temperature and resonance
frequency for a range of values of x [5] but only the low H
concentration case x = 0.1 will be considered here. Two
maxima in R1 as a function of temperature occur for each
resonance frequency. The data in the vicinity of the high
temperature maximum is shown in figure 1 as a function of
1000/T , and the data over the full temperature range is shown
as a function of T in figure 2. The contribution to the relaxation
from the conduction electrons has been subtracted [5]. The
magnetic dipolar contribution to the relaxation is dominated
by interactions between protons and metal nuclei and can be
calculated from equation (1). Contributions from both the Ta
and V nuclei have been included in all calculations.

Since �1 � �2 the relaxation at high temperatures is a
consequence of the slower �2 jumps between hexagons with
many rapid jumps of hydrogen around a hexagon occurring
between each jump between hexagons. The relaxation can
therefore be calculated from random walk theory with the
Poisson distribution referring to the number of �2 jumps. The
high temperature form of �2 can be deduced from the measured
value of the diffusivity D [15], which is of Arrhenius form.
For �1 � �2, the jump rate �2 is related to the diffusivity by
�2 = 48D/a2 [12] where a is the lattice parameter. The result
for �2 is an activation energy E2 = 0.267 eV and a prefactor
�20 = 2.57 × 1012 s−1. A fit to the data in figure 1 was made
using these parameters with the addition of a multiplicative
scaling factor p in the relaxation rate to account for the fraction
of mobile hydrogen that contribute to the relaxation, and a
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factor A to scale the magnitude of �20. The value of p = 0.78
was chosen to fit the values of the relaxation maxima and the
value of A = 0.58 was chosen to fit the temperatures at which
the maxima occur. The calculations included up to seven jumps
between hexagons. Also shown in figure 1 is a fit using zero
jumps between hexagons which corresponds to the modified
BPP model [12]. In this case p = 0.70 and A = 0.47.

It can be seen that the random walk model provides an
excellent fit to the high temperature experimental data with
only a small adjustment A = 0.58 to the frequency �20

from the diffusivity. A fit could also have been made by
including a small adjustment to the activation energy rather
than the prefactor. The modified BPP model also provides
a reasonable fit to the data, but produces narrower maxima
than the random walk theory. Both models underestimate
the relaxation rates at lower temperatures. The fraction p of
mobile hydrogen will decrease as the temperature decreases
and this effect would reduce the calculated relaxation rates
further on the low temperature side of the maximum. The
temperature dependence of p cannot therefore account for the
underestimation of the relaxation rates at lower temperatures.

The relaxation data over the whole temperature range is
shown in figure 2 as a function of temperature. The magnitude
of the low temperature maxima are much smaller than the
high temperature maxima. The values of the high temperature
maxima are consistent with the 1/ω dependence expected
from equation (1) for dipolar relaxation. But, as noted by
Buzlukov and Skripov [5], this is not the case for the low
temperature maxima, which suggests an additional relaxation
mechanism that increases with decreasing frequency. The
postulated additional mechanism was cross-relaxation between
the proton and Ta quadrupolar nuclear spins [2, 16] which
could be relevant at low temperatures and it was suggested
that this relaxation contribution would be negligible for the
higher frequency 90 MHz data [5]. An alternative explanation
of the anomalous behaviour of the low temperature data that the
dipolar relaxation has a distribution of jump rates was rejected
because it would require an unreasonably broad distribution
of rates [5]. The assumption that the 90 MHz data is due
to unlike-spin dipolar relaxation and that the lower frequency
data involves relaxation contributions from another process
will also be made here. Only the 90 MHz data will therefore
be analysed in terms of the random walk model.

In the vicinity of the low temperature maximum the
dipolar relaxation is due to the faster jump rate �1 within a
hexagon. The slower jump rate �2 is too slow to have any
influence on the relaxation at low temperatures. The relaxation
rate in this region can be calculated from the simpler modified
BPP model since this is identical to the random walk model
when �2 = 0. The temperature dependence p(T ) of the
fraction of mobile hydrogen must also be taken into account
and this was estimated as follows. The value of p at the
temperature at which the low temperature maximum occurs
can be estimated from the ratio of the observed maximum rate
to the calculated rate from equation (1) and is p = 0.050
at T = 45 K. The function p(T ) was then assumed to be
linear between the values of p deduced from the high and
low temperature maxima. This procedure neglects the effect

Figure 3. Temperature dependence of the jump rates �1 and �2. The
circles are the values of �1 obtained from the fit to the low
temperature relaxation data points. The solid line for �1 is the
Arrhenius fit to the high temperature part of this data, and the dotted
line is the �1 = �10 exp(T/T0) fit to the low temperature part of this
data. The �1 deduced from the QENS data [6] is the dashed line. The
solid line for �2 is the Arrhenius form obtained from the diffusion
data and fit to the high temperature relaxation data.

that the observed relaxation maximum will occur at a lower
temperature than the calculated maximum when the decreasing
form of p(T ) with temperature is taken into account. The
calculated relaxation rates were then used to determine the
value of �1 at the temperature of each low temperature
experimental relaxation data point. The values of �1 obtained
are shown in figure 3. The data show approximate Arrhenius
behaviour for high temperatures. An Arrhenius fit gives an
activation energy of 0.025 eV and a prefactor of 2.6 × 1011

s−1. The enhancement of �1 from Arrhenius form at low
temperatures is characteristic of quantum diffusion [5, 17]
and suggests that the hydrogen jumps on a hexagon exhibit
quantum diffusion below ∼50 K. The Arrhenius form of �2

from the fit to the high temperature region is also shown in
figure 3.

The temperature dependence of p and �1 have also been
obtained from QENS data for TaV2Hx with x = 0.65 in the
temperature range 70–290 K [8]. These QENS results for the
temperature dependence of p are reasonably consistent with
the values deduced here from the relaxation theory, but this
is not the case for �1. In the QENS analysis the temperature
dependence of �1 was fitted to the function �10 exp(T/T0)

with �10 = 1.30 × 1011 s−1 and T0 = 220 K. This result
for �1 is shown as the dashed line in figure 3. The dotted
line in figure 3 shows the fitting of this function to the low-
temperature �1 data from the proton relaxation data, with
parameters �10 = 1.1 × 107 s−1 and T0 = 10.2 K which are
very different from the QENS fit parameters. It can be seen
that there is a significant difference in both the magnitude and
functional forms of �1 obtained from the relaxation data and
from the QENS data. The hydrogen concentration x = 0.65
in the QENS study [8] is higher than the x = 0.1 in the spin
relaxation data [5], but the jump rate increases with decreasing
hydrogen concentration [5] and so adjusting the QENS jump
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rate for a lower x would increase the discrepancy. Further,
calculating the relaxation rate from equation (1) using the
QENS results for p and �1 gives a relaxation rate too small
to be observable. The values of the jump rate �1 deduced from
the QENS analysis and from the spin relaxation analysis are
therefore incompatible.

The above analyses of the relaxation data has considered
the high-and low temperature data independently. The
modified BPP model provides an approximate analytic
spectral density function that can be used over the complete
temperature range. The results obtained by using this function
with the forms of p, �1 and �2 deduced above from the
relaxation data are shown in figure 2 as a function of
temperature. The results at low temperatures are the same
as those from the random walk theory, the results at high
temperatures are similar to those in figure 1, and the results
in the region between the maxima give a reasonable fit to the
90 MHz data. The modified BPP model therefore provides a
useful and simple approach for analysing the relaxation data
over the entire temperature range, subject to the effect that
it produces maxima that are somewhat too narrow at high
temperatures.

4. Discussion and conclusions

Using random walk theory has enabled an accurate calculation
of proton relaxation rates for low concentrations of hydrogen
diffusing between interstitial g sites in the cubic C15
AB2 structure. The application of the theory to proton
relaxation in TaV2Hx has shown that the temperature-
dependent jump rate �2 between hexagons deduced from
diffusivity measurements [15] is consistent with the high
temperature relaxation data.

The temperature dependence of the jump rate �1 between
g sites on a hexagon was obtained from the low temperature
relaxation data. This jump rate is of Arrhenius form above
∼50 K and showed non-Arrhenius form that is evidence of
quantum diffusion at lower temperatures. These values of
�1 are incompatible with the values deduced from QENS
experiments [8]. A possible reason for this discrepancy could
be that the model of only considering �1 jumps that was
used in analysing the QENS data [8] is insufficient. Another
possibility is that the low temperature relaxation maximum
for a frequency of 90 MHz also has a contribution from
cross-relaxation as has been argued for the 23 and 40 MHz
data [5]. A further possibility is that the hydrogen jumps
at low temperatures are more complicated than just the �1

and �2 jumps of isolated hydrogen; jumps from ordered
configurations of hydrogen could become significant at low
temperatures in either, or both, of the spin relaxation and

QENS data. This could be the case even at low hydrogen
concentrations if the ordered configurations were clusters
due to short range hydrogen–hydrogen interactions. In
addition, recent measurements of proton spin relaxation in
nanostructured TaV2Hx have shown that the relaxation maxima
at low temperatures disappear as the grain size of the material
is reduced [6]. This has been attributed [6] to the jump rates
�1 within hexagons being sensitive to slight distortions in the
hexagons.

The high temperature diffusive behaviour of hydrogen in
TaV2Hx appears to be well understood but the low temperature
behaviour shows anomalies between the interpretations of
the nuclear spin relaxation data and QENS data for similar
diffusion models. Further theoretical and experimental
effort would be useful in clarifying the low temperature
diffusive behaviour of hydrogen in TaV2 and other Laves-phase
intermetallic compounds. The random walk theory of nuclear
spin relaxation developed here for diffusion between interstitial
g sites in the cubic C15 structure should also be applicable to
other structures. It can provide a rigorous calculation of the
relaxation rates at low hydrogen concentrations and provide an
assessment of the accuracy of simpler models such as the BPP
and modified BPP model for TaV2Hx [12].
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